The changing landscape of sequencing platforms that underpin genome assembly

From Flickr user  itsrick208 .  CC BY-NC 2.0

From Flickr user itsrick208CC BY-NC 2.0

In my last blog post I looked at the the amazing growth over the last two decades in publications that relate to genome assembly.

In this post, I try seeing whether Google Scholar can also shed any light on which sequencing technologies have been used to help understand, and improve, genome assembly.

Here is a rough overview of the major sequencing platforms that have underpinned genome assembly over the years. I’ve focused on time points when there were sequencing instruments that people were actually using rather than when the technology was first invented or described. This is why I start Sanger sequencing at 1995 with the AB310 sequencer rather than 1977.

Click to enlarge

Return to Google Scholar

So how can you find publications which concern genome assembly using these technologies? Well here are my Google Scholar searches that I used to try to identify relevant publications.

  1. Sanger — "genome assembly"|"de novo assembly" sanger — I had to exclude the Sanger’s website address as this was used in many papers that might not be talking about Sanger sequencing per se.
  2. Roche 454 — "genome assembly"|"de novo assembly" 454 (roche |pyrosequencing) — another tricky one as ‘454’ alone was not a suitable keyword for searching.
  3. Illumina — "genome assembly"|"de novo assembly" (illumina|solexa) — obviously need to include Solexa in this search as well.
  4. ABI SOLiD — "genome assembly"|"de novo assembly" “ABI solid”
  5. Ion Torrent — "genome assembly"|"de novo assembly" "ion torrent”
  6. PacBio — "genome assembly"|"de novo assembly" ("PacBio"|"Pacific Biosciences”)
  7. Oxford Nanopore Technologies — "genome assembly"|"de novo assembly" "Oxford Nanopore”

Now obviously, many of these searches are flawed and are going to miss publications or include false positives. This makes comparing the absolute numbers of publications between technologies potentially misleading. However, it should still be illuminating to look at the trends of how publications for each of these technologies have changed over time.

The results

As in my last graph, I plot the number of publications on a log scale.

Click to enlarge


  1. Publications about genome assembly that mention Sanger sequencing dominate the first decade of this graph before being overtaken by Illumina in 2009.
  2. The growth of publications for Sanger is starting to slow down
  3. Publications for Roche 454 peaked in 2015 and have started to decline
  4. Publications concerning Ion Torrent peaked a year later in 2016
  5. ABI SOLiD shows the clearest ‘rise and fall’ pattern with five years now of declining publications about genome assembly
  6. The rate of growth for PacBIo publications has been pretty solid but may have just slowed a little in 2017
  7. Oxford Nanopore, the newest kid on the block — in terms of commercially available products — has been on a solid period of exponential growth and looks set to overtake Ion Torrent (and maybe Roche 454) this year.

Are we about to reach ‘peak genome assembly’?

Sanger Peak . Image from Google Maps.

Sanger Peak. Image from Google Maps.

The ever-declining costs of DNA sequencing technologies — no, I’m not going to show that graph — has meant that the field of genome assembly has exploded over the last decade.

Plummeting costs are obviously not the only reason behind this. The evolving nature of sequencing technologies has meant that this year has pushed us into the brave new era of megabase pair read lengths!

Think of the poor budding yeast: the first eukaryotic species to have its (12 Mbp) genome sequenced. There was a time when the sequencing of individual yeast chromosomes would merit their own Nature publication! Now only chromosome IV remains as the last yeast chromosome whose length couldn’t be exceeded by a single Oxford Nanopore read (but probably not for much longer!). Update 2018-09-12: a 2.2 Mbp Nanopore read means that chromsome IV's length has now been eclipsed!

Looking for genome assembly publications

I turned to the font of all (academic) knowledge, Google Scholar, for answers. I wanted to know whether interest in genome assembly had reached a peak, and by ‘interest’ I mean publications or patents that specifically mention either ‘genome assembly’ or ‘de novo assembly’.

Some obvious caveats:

  1. Google Scholar is not a perfect source of publications: some papers are missing, some appear multiple times, and occasionally some are associated with the wrong year.
  2. Publications are increasing in many fields due to more scientists being around and the inexorable rise of if-you-pay-us-money-and-randomly-hit-keys-on-your-keyboard-we-will-publish-it publishing. So a rise in publications in topic 'X' does not necessarily reflect more interest in that topic.
  3. Not all publications concerning genome assembly will contain the phrases ‘genome assembly’ or ‘de novo assembly’.

Caveats aside, let’s see what Google thinks about the state of genome assembly:

Click to enlarge

Does this tell us anything?

So there’s clearly been a pretty explosive growth in publications concerning genome assembly over the last couple of decades. Interestingly, the data from 2017 suggest that the period of exponential growth is starting to slow just a little bit. However, it would seem that we have not reached ‘peak genome assembly’ just yet.

There are, no doubt, countless hundreds (thousands?) of publications that concern technical aspects of genome assembly which have reached dead ends or which have become obsolete (pipelines for your ABI SOLiD data?).

Maybe we are starting to reach an era where the trio of leading technologies (Illumina, Pacific Biosciences, and Oxford Nanopore) are good enough to facilitate — alone, or in combination — easier (or maybe less troublesome) genome assemblies. I’ve previously pointed out how there are more ‘improved’ assemblies being published than ever before.

Maybe the field has finally moved the focus away from ‘how do we do get this to work properly?’ to ‘what shall we assemble next?’. In a follow-up post, I’ll be looking at the rise and fall of different sequencing technologies throughout this era.

Update 2018-08-13: Thanks to Neil Saunders for crunching the numbers in a more rigourous manner and applying a correction for total number of publications published per year. The results are, as he notes, broadly similar.

Genomic makeovers: the number of ‘improved’ genome sequences is increasing

Image from  flickr user londonmatt . Licensed under Creative Commons  CC BY 2.0 license

Image from flickr user londonmatt. Licensed under Creative Commons CC BY 2.0 license

Excluding viruses, the genome that can claim to being completed before any others was that of the bacterium Haemophilus influenzae, the sequence of which was described in Science on July 28 1995.

I still find it pretty pretty amazing to recall that just over a year later, the world saw the publication of the first complete eukaryotic genome sequence, that of the yeast Saccharomyces cerevisiae.

The field of genomics and genome sequencing have continued to grow at breakneck speeds and the days of a genome sequence automatically meriting a front cover story in Nature or Science are long gone.

Complete vs Draft vs Improved

I’ve written previously about the fact that although more genomes than ever are being sequenced, fewer seem to be ‘complete’. I’ve also written a series of blog posts that address the rise of ‘draft genomes’.

Today I want to highlight another changing aspect of genome sequencing, that of the increasing number of publications that describe ‘improved’ genomes. Some recent examples:

Improving genomes is an increasing trend

To check whether there really are more ‘improved’ sequences being described, I looked in Google Scholar to see how many papers feature the terms ‘complete genome|assembly’ vs ‘draft genome|assembly’ vs ‘improved genome|assembly’ (these Google Scholar links reveal the slightly more complex query that I used). In gathering data I went back to 1995 (the date of the first published genome sequence).

As always with Google Scholar, these are not perfect search terms and they all pull in matches which are not strictly what I’m after, but it does reveal an interesting picture:

Number of publications in Google Scholar referencing complete vs draft vs improved genomes/assemblies

It is clear that the number of publications referencing ‘complete’ genomes/assemblies has been increasing at a steady rate. In contrast, publications describing ’draft’ genomes have grown rapidly in the last decade but the rate of increase is slowing. When it comes to ‘improved’ genomes it looks like we are in a period where many more papers are being published that are describing improved versions of existing genomes (in 2017 there was a 54% increase in such papers compared to 2016).

Why improve a genome?

I wonder how much of this growth reflects the sad truth that many genomes that were published in the post-Sanger, pre-nanopore era (approximately 2005–2015) were just not very good. Many people rushed to adopt the powerful new sequencing technologies provided by Illumina and others, and many genomes have been published using those technologies that are now being given makeovers by applying newer sequencing, scaffolding, and mapping technologies

The updated pine genome (the last publication on the list above) says as much in its abstract (emphasis mine):

The 22-gigabase genome of loblolly pine (Pinus taeda) is one of the largest ever sequenced. The draft assembly published in 2014 was built entirely from short Illumina reads, with lengths ranging from 100 to 250 base pairs (bp). The assembly was quite fragmented, containing over 11 million contigs whose weighted average (N50) size was 8206 bp. To improve this result, we generated approximately 12-fold coverage in long reads using the Single Molecule Real Time sequencing technology developed at Pacific Biosciences. We assembled the long and short reads together using the MaSuRCA mega-reads assembly algorithm, which produced a substantially better assembly, P. taeda version 2.0. The new assembly has an N50 contig size of 25 361, more than three times as large as achieved in the original assembly, and an N50 scaffold size of 107 821, 61% larger than the previous assembly.

Perhaps I’m being a bit harsh in saying that the first versions of many of these genomes that have been subsequently improved were not very good. The more important lesson to bear in mind is that, in reality, a genome is never finished and that all published sequences represent ‘works in progress’.